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ABSTRACT Staphylococcal enterotoxins are a family of
structurally related proteins that are produced by Staphylo-
coccus aureus. In addition to their role in the pathogenicity
of food poisoning, these microbial superantigens have pro-
found effects on the immune system, which makes them
useful tools for understanding its mechanism of action.
These molecules (24-30 kDa) are highly hydrophilic and
exhibit low a helix and high /3 pleated sheet content, sug-
gesting a flexible, accessible structure. Staphylococcal
enterotoxins are among the most potent activators of T
lymphocytes known. The receptors for staphylococcal en-
terotoxins on antigen-presenting cells are major histocom-
patibility complex (MHC) class II molecules. Further, the
a-helical regions of the class II molecule are essential for
function and appear to interact directly with the NH2-
terminal region of staphylococcal enterotoxins such as
SEA. Recent studies have shown that a complex of
staphylococcal enterotoxin and MHC class II molecules is
required for binding to the V/3 region of the T cell antigen
receptor. Staphylococcal enterotoxin mitogenic activity is
dependent on induction of interleukin 2, which may be
intimately involved in the mechanism of



TABLE 1. Characteristics of .ctaphylococcal enterotoxins
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Toxin

Molecular
Mass
(kDa) pl

Disulfide
bond

Homoloy
to SEA

CD struc tune (%)

Munine Vfl usageba helix j3 sheet

SEA 27.8 7.3 Yes
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Figure 1. Effect of SEA (A) and SEB (B) on the primary in vitro
antibody (PFC = plaque-forming cell) response to sheep red blood

cells (SRBC). Toxins were added at the time of SRBC addition, and
direct anti-SRBC PFCs per culture (0) and viable cells recovered
per culture () were determined on day 5. Data from ref 22;
reproduced by permission of the Journal of Immunology.

affect cellular functions, including anergy, by activating
T cells. This conclusion from in vitro studies is supported by
in vivo experiments in which suppression of antibody pro-
duction and induction of weight loss in mice by SEB de-
pended on the presence of functional T cells (29). Further in
vivo evidence consistent with these results was derived from
rats parenterally exposed to SEA (30). A rapid immunologi-
cal response, confined primarily to the stomach and duode-
num, critically involved monocytes and small and medium
lymphocytes only a few hours after administration of SEA.

There is also evidence that staphylococcal enterotoxins

possess some properties that are dissociable from their
T cell-mediated effects. Mapping of functional sites on
staphylocoecal enterotoxin C, (SEC,) has been carried out
by limited tryptie hydrolysis of the molecule (13). An NH2-
terminal 6.5-kDa fragment that had mitogenic activity was
not emetic, and a COOH-terminal 22-kDa fragment that
was emetic was not mitogenic. It was concluded that mito-
genie and emetic properties originated from different sites on
the molecule; however, the trypsin treatment itself sig-
nificantly reduced both activities relative to those of the
native SEC,. In contrast to these results, a tryptie fragment
of SEC with the NH2-terminal 59 amino acids deleted re-
tained its mitogenicity (31).

When taken together, results from two laboratories using
carboxymethylated toxin suggested a dissociation of the
emetic and mitogenic activities of SEB. Carboxymethylated
SEC induced mitogenesis (32) but was not emetic (33).
However, the results of these studies with carboxymethylated

SEB are problematic because no evidence was provided that
the same lots of SEB were used in both studies. Rather, the
emesis studies with earboxymethylated SEB were simply
referenced. These emesis studies are of interest, however, be-
cause earboxymethylated SEB competitively inhibited the
emetic effects of native SEB in monkeys (33).

An important question concerns the identity of the target
cells for the emetic effects of SEB and other enterotoxins,
since these effects may be independent of T cell activation.
Experimental results suggest that SEB stimulates mast cells
to release leukotrienes, which are thought to be responsible
for the emetic response of monkeys (34). Corroborative evi-
dence for this mechanism of SEB action was the ability of a
leukotriene LTD4/LTE4 receptor inhibitor (LY171883) to
block emesis. However, this model requires stronger suppor-

tive evidence. For example, direct binding and activation of
isolated mast cells by enterotoxins must be investigated. It
has been established that MHC class II antigens (see next
section) serve as the receptors on nonlymphoid cells for the
staphylocoecal enterotoxins, and it is important to show that
mast cells display such receptors. Thus, staphylococcal en-
terotoxins may exert their biological effects through activa-
tion of T cells as well as other cells such as mast cells.

THE MAJOR HISTOCOMPATIBILITY COMPLEX

SEA-induced T lymphocyte responses are dependent on ac-
cessory cells in a manner analogous to the accessory cell re-
quirement for presentation of protein antigens to lympho-
cytes (35, 36). The Ia (MHC class II) molecules on the
antigen-presenting cells are the toxin receptors (2, 37-39).
Presentation of staphylococcal enterotoxins differs in two im-
portant ways from normal protein antigen presentation.
First, presentation of staphylococeal enterotoxin is not MHC
restricted, so that human cells can present enterotoxin to
mouse T cells as effectively as mouse antigen-presenting
cells. However, presentation varies among different MHC
class II haplotypes (40). Second, the prior processing or pro-

teolysis to peptide fragments that is required for protein anti-
gens is not necessary for enterotoxin presentation (35, 36).
In the mouse some staphylococeal enterotoxins bind prefer-
entially to the I-E isotype, whereas others bind both I-A and
I-E (2). In humans, the enterotoxins typically bind to human
leukocyte antigens HLA-DR and -DQ, but not to -DP (41).
Enterotoxins bind to antigen-presenting cells with an affinity
(Kd) between 10-6 and l0 M (35, 39, 42). SEA binds with
higher affinity than does SEB (43), and enterotoxins bind
human MHC molecules with higher affinity than mouse
MHC molecules.

Of several approaches that have been used to identify the
sites of interaction between MHC class II molecules and
staphylococcal enterotoxins, the use of synthetic peptides in

competitive binding and function tests has been particularly
valuable. Overlapping peptides corresponding to regions
30-60, 50-70, 65-85, and 80-100 of the MHC class II anti-
gen j3 chain on mouse (H2b) accessory cells were synthe-
sized and tested for their ability to inhibit SEA binding to a
mouse B cell lymphoma antigen-presenting cell line (A20)
and to human Burkitt’s lymphoma line Raji (HLA-DR) (44).
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Figure 2. Effect of SEA on the primary in vitro PFC response to
Escherichia coli 0127 lipopolysaccharide (LPS) in normal (A) and T
cell-deficient (athymic nude) (B) mouse spleen cell cultures. En-

terotoxin was added at the same time as antigen, and direct PFCs

per culture (0) and viable cells recovered per culture (#{149})were de-
termined on day 5. Data from ref 28; reproduced by permission of
IRCS Medical Science.
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Peptide I-A(65-85), corresponding to the predicted a
helix along the hypothetical antigen-binding cleft of the Ia
molecule /3 chain, preferentially inhibited SEA binding to
the cells (Fig. 3). Consistent with these results, I-A(65-85)

also directly and specifically bound both the intact SEA

molecule and its Ia binding site, represented by peptide SEA

(1-45) (see later). Functionally, I-A(65-85) inhibited SEA

stimulation of human and mouse T cell proliferation (45,
and J. K. Russell, personal communication). Other peptides

corresponding to sequences overlapping this MHC binding

site for SEA, I-A(60-80), I-Aa(7090), and I-A(60-90),

inhibited responsiveness to SEA in a similar fashion. How-

ever, peptides more distant from this SEA binding site, in-
cluding I-A(50-70) and I-A(80-100), did not block SEA-

induced mitogenesis. All of the active j3 chain peptides con-

tained region 70-80, suggesting that this a-helical region

may be important for SEA function. Studies with substituted

synthetic peptide analogs of region 65-85 are being done to
determine more definitively which amino acid residues are

directly involved in SEA interaction with the class II MHC
/3 chain a helix (see Fig. 3). Preliminary results suggest that

amino acid residues 72 and 79 or 80 of the /3 chain a helix,
which are predicted 
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side the antigen-binding groove. However, an important
caveat is that chimerics and site-directed mutations do not

directly identify binding sites for functional regions of
molecules because changes in residues can alter the molecu-

lar conformation at sites distant from those where the

changes occur (53).
Studies also have been carried out with synthetic peptides

corresponding to various regions of the a chain of mouse
MHC class II molecules U. K. Russell, personal communi-
cation). Like the /3 chain a-helical peptides, peptides cor-
responding to the a chain a helix inhibited SEA activation
of T cells and directly bound SEA. Unlike the /3 chain a-
helical peptides, however, the a chain a-helical peptides did
not block binding of SEA to MHC class II molecules. It ap-
pears that the a helix of the a chain is a cobinder of SEA but
cannot block binding of SEA to the a helix of the 3 chain,
whereas the /3 chain helix both binds to and blocks the bind-
ing of SEA to the intact MHC class II molecule (see Fig. 3).

Thus, the data obtained with class II MHC a and /3 chain
synthetic peptides suggest that both a helices are important
for SEA-induced function, although the 3 chain a helix is
sufficient for SEA binding to cells. Taken together, the data
are consistent with a model of class II molecule-SEA inter-
action in which both a and /3 chain a helices bind SEA to
form a complex that is subsequently recognized by the T cell

receptor. As mentioned above, SEA binding probably occurs

outside the antigen-binding groove (51, 52). One molecule of
SEA may bind at the same time to both a and /3 chains of an

MHC molecule, although it is also possible that more than

one SEA molecule binds one MHC molecule. Thus, the
stoichiometry of this interaction remains to be established.

THE T CELL ANTIGEN RECEPTORS

In addition to the Ia receptor on antigen-presenting cells,
considerable insight has been gained into the nature of the
staphyloeoecal enterotoxin receptor on T cells. It was shown
that the TcR for antigenic peptides is also the receptor for
staphylocoecal enterotoxins (2, 3, 55). Further, the ability of
a given enterotoxin type to activate a particular T cell de-

pended on the amino acid sequence of the V/3 region of the

TeR (2, 3); different enterotoxins could activate different
T cells, depending on the V$ type of the TeR. The latter
property is the basis for coining the name sup erantigens for the
staphylocoecal enterotoxins (3). It appears that Vj3 spe-

cificity is a quantitative effect rather than a qualitative one,
because T cell clones of the same V/3 specificity vary in their

response to microbial superantigens (56). It should be em-

phasized, however, that the evidence for interaction of

staphylococeal enterotoxins with TeRs is based almost en-

tirely on studies with antibodies to the TeR. Unlike the ease

of Ia molecules, until recently there was no definitive evi-
dence for direct binding of enterotoxins to TeR.

Interaction of the microbial superantigen and MHC com-
plex with the TeR has been demonstrated using a cell bind-
ing assay that substantially increases the avidity of the inter-

action (57). This increased avidity may mimic in vivo T cell

activation, where only about 0.5% TeR occupancy was re-

ported to be required for activity. For the direct binding

studies, a truncated, secreted form of the 13 chain of the TcR
was employed that does not require interaction with the a

chain or accessory molecules such as CD3 for secretion (58).

This isolated /3 chain was sufficient to bind SEA complexed

to cell surface MHC class II molecules. The recognition

could be inhibited by antibodies directed against each com-
ponent of the reaction, indicating specificity. Although 3

chain binding could be observed independently, the a chain
of the TeR may be necessary for elicitation of function (59).

Activation of -yb-bearing T cells by SEA was dependent on

the presence of the V-y9 variable region (60). Thus, this ob-

servation also argues against exclusive binding by the 3
chain.

Little information is available on the V/3 regions of the
TeR that are involved in binding staphylococcal entero-
toxins. One report described studies of SEC2 induction of
IL 2 in cells bearing chimerics of human V/313.2 and V/313.1
(61). V/313.2 cells respond to SEC2, and Vf313.1 cells do not.
Cells containing residues 67-77 from the V/313.2 element

that were introduced into the corresponding region of the
V/313.1 element responded to SEC2, and it was concluded

that this region of the V/3 sequence of the TeR was involved
in binding SEC2. This region is thought to lie on the side of

the TeR molecule away from the conventional antigen/MHC

binding site. However, definitive elucidation of binding sites

will require direct binding experiments that have not yet

been performed.

SIMILARITY OF S’]APHYLOCOCCAL ENTERO’]D)UNS
TO THE SELF-SUPERANTIGEN Mls

There is a functional similarity between superantigens such

as the staphylocoecal enterotoxins and putative products of

the mouse minor lymphocyte stimulating (MIs) antigen

locus (2, 62). Mls antigens were discovered when it was

shown that T cells from some strains of mice could be stimu-

lated by spleen cells from other mice even though the mice

were identical with respect to MHC (63). These antigens

were called Mls antigens. Until recently, the understanding
of Mls antigens and their function was far from complete.
Nothing was known about their nature or structure. Al-

though initially there was thought to be a single Mls locus,
there are now known to be at least two MIs unlinked loci,
each with a stimulator Mlsa and a responder Mlsb allele (2).

The functional response of T cells to Mls antigens is essen-

tially the same as that to microbial superantigens, except

that the microbial superantigens are relatively well charac-

terized but nothing is known about the nature of the Mls
antigens. What, then, is the function of microbial and self-

superantigens? One group has proposed that self-super-
antigens such as Mls have evolved in mice to eliminate the

Vfl-bearing T cells that respond to microbial superantigens

such as the staphyloeoccal enterotoxins (62). This would pro-

tect the mice against the negative effect of overstimulation of

the immune system. Another group considers that the self-

superantigens (and by association also the microbial super-

antigens) are coligands with specific antigens and that in this

capacity they help the immune response to specific antigens

(64).
Genetic data have shown a linkage between the end Td
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microbial. It would seem then that the function of superanti-
gens remains to be determined. Certainly, the nature of their
receptors in the immune system and the power with which
they activate it provide the impetus to determine the role and
importance of superantigens in the immune response to s e-
cifie antigens, both self and foreign. Fj
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